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LOCALIZATION IN SPATIALLY DISORDERED 
SYSTEMS: SCREENING AND BAND STRUCTURE 

EFFECTS AT THE EMA LEVEL 

MARTYN D. WINN and DAVID E. LOGAN 

University of Oxford, Physical Chemistry Laboratory, 
South Parks Road, Oxford, OX1 3QZ, UK. 

(Received I I January 1990) 

An analysis is given of Anderson localization in a one-band tight-binding model with off-diagonal disorder 
characteristic of a quenched liquid-like structure. We extend a localization criterion due to Logan and 
Wolynes, based on a self-consistent determination of the most probable value of the imaginary part of 
the site self-energy, to include screening arising from many-body terms in the renormalized perturbation 
series. Liquid state methods are used to examine screening, as embodied in an effective energy and density 
dependent transfer matrix element, at the level of the effective medium approximation. I t  is shown that 
this effective transfer matrix element is screened in high energy regions and anti-screened in low energy 
regions, so that extended states tend to occur in the low energy low density of states regime. Theoretical 
predictions for the mobility edge trajectories are found to be in reasonable agreement with recent computer 
simulations. The effects of the short-ranged structure of the system are also examined. 

K E Y  WORDS: Anderson localization, screening, effective medium approximation. 

1 INTRODUCTION 

A theoretical study of the electronic properties of liquids and amorphous solids 
is an area of active research. The disorder inherent in these systems must be taken 
seriously and, even at an idealized one-electron level of description, can lead to 
profound effects such as disorder-induced (Anderson) localization, a mechanism of 
possible relevance to metal-insulator transitions occurring for example in the impurity 
band of doped semiconductors and in both monovalent and divalent liquid metals. 
Modelled at the level of a tight-binding Hamiltonian, the disorder manifests itself in 
both the diagonal elements (site-diagonal disorder, SDD) and in the off-diagonal 
transfer matrix elements (off-diagonal disorder, ODD). Most work on the localization 
problem has focussed on spatially periodic systems with SDD alone. Consideration 
of the ODD characteristic of topologically disordered systems is a more recent area 
of concern. 

Some of the simpler non-trivial quantities to analyze are the configurationally 
averaged Green functions of a spatially disordered tight-binding model, from which 
follow the density of states of the system and the electrical conductivity in a weak 
disorder (Boltzmann) regime. Anderson localization, however, which is the primary 
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12 M .  D. WlNN AND D. E. LOGAN 

concern of this paper, requires a more subtle treatment and although the averaged 
Green functions do supply necessary input to a theory of localization, to infer 
localization itself one must study typical rather than average quantities. A probabilis- 
tic analysis is therefore required, and this centres usually on the renormalized 
perturbation series (RPS) for the site self-energy1. 

Recently Logan and Wolynes2 have developed a simple mean field theory of 
localization in spatially disordered systems, in which self-consistency is enforced on 
the most probable value of the imaginary part of the self-energy, the vanishing of 
which at a certain critical number density of sites (and for a given energy E )  is taken 
as the signature of a transition to localized states of energy E. The theory is formulated 
at the level of second order RPS and thereby omits contributions to the localization 
characteristics of the system arising from irreducible m 2 3-body interactions embo- 
died in the higher order RPS terms. Such contributions give rise to asymmetry in 
the mobility edge trajectories of the system, as predicted theoretically3 and observed 
in computer  simulation^^^^. The effects of higher order RPS terms have been studied 
by Logan and Wolynes3 within the framework of the self-consistent theory of 
localization due to Abou-Chacra ef aL6, and have been interpreted in terms of an 
energy-dependent screening of the interaction between a pair of atoms by the other 
atoms in the system, embodied in an energy and density-dependent renormalized or 
effective transfer matrix element. 

In Section 2 of this paper we incorporate screening effects into the most probable 
value theory of localization, and describe the resultant localization criterion which 
depends on both the first moment of the renormalized transfer matrix element and 
the averaged density of states. In Section 3 we investigate the role of liquid-like 
structure in determining the localization characteristics of the system. It is known 
that the best single-site approximation to the density of states is the effective medium 
approximation' (EMA), which we have recently studied'. By exploiting parallels 
between the theory for the averaged Green functions and that for the renormalized 
transfer matrix element, we show in Section 3 how to formulate a description of the 
latter at the EMA level. Theoretical predictions for the mobility edge trajectories are 
then compared with a recent computer study by Gibbons et al.' with which they are 
found to be in reasonable agreement. 

2 LOCALIZATION CRITERION 

The excitation of interest moves in a quenched configuration of atoms with centre- 
of-mass positions {Ri} ; the atoms interact via an appropriately chosen classical 
potential which determines the weights of the possible spatial configurations. For a 
one-band system a single characteristic energy, the zero-order site energy E ~ ,  is 
associated with each atom/site. SDD is modelled by assuming the E;S to be in- 
dependent random variables with a common probability distribution P(ci).  The 
excitation hops from site j to site i via a transfer matrix element ' J j  E V(Ri - Rj); 
ODD thus arises from the spatial disorder inherent in the site centre of mass 
distribution. 
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LOCALIZATION DUE TO DISORDER 13 

The site Green functions for the random tight-binding model satisfy 

( Z  - Ei )G i j (Z )  - c' vkGkj (Z )  = dij 
k 

where the prime excludes k = i ,  and z = E + iq ( q  -+ 0 +)  where E is the energy. The 
site self-energy S,(z) = E,(E) - iAi(E) is defined via the diagonal Green function by: 

( 2 )  

For a given realization of the random system the nature of eigenstates of energy 
E is determined by the behaviour of A,(E) = - Im Si(z)  as q -+ O+ : for localized states 
Ai(E) cc q -+ 0 + ,  whereas for extended states Ai(E) is finite in this limit'. For an 
ensemble of systems the question of whether states of a given energy are localized 
or extended is studied by examining probablistically the convergence characteristics 
of renormalized perturbation theory for the site self-energy. One considers the 
renormalized perturbation series' (RPS) for Si(E) ,  given by 

Gii(z)  = [ Z  - 8, - Si(2)J-' 

S,(E)  = c' v . [ z  - E~ - S'."J-'Y, 
J 

.i (3) 
+ C' v k [ z  - E~ - S t . J ) ] -  ' I / k j [ z  - cj - SY)J-'Y, + . . .  

j .  k 

where the primes restrict each summation to a self-avoiding path. Quantities such 
as S:)(E) refer to the self-energy of si tej  with site i removed from the system, and are 
defined by a series analogous to (3) but with the relevant sites excluded from the 
sums; each term in the RPS can thus be iterated as a continued fraction. A divergence 
in the resultant renormalized perturbation expression for S,(E), which indicates the 
existence of extended eigenstates of energy E9, can thus arise either from a divergence 
in the RPS or from a divergence in the iteration procedure. In practice, most 
approximate theories of localization focus on the convergence characteristics of either 
the RPS or the iteration procedure alone. In particular we mention the self consistent 
theory of Abou-Chacra el d6, which considers solely the convergence of the iteration 
procedure by truncating the RPS at the second order term-a procedure which is 
exact for a Cayley tree. Conflating S?) with Sj, the resultant second order RPS 
reduces to 

I V,I2 S,(E) = C' ~ - ~ 

E + iq - cJ - S j ( E )  (4) 

which is analyzed self-consistently by assuming that the probability distributions 
for IS,) are independent, and demanding that they be identical. 

The self-consistent theory has been extended to spatially disordered systems, 
and investigated by a number of authors"-". A simple mean field method has also 
been developed3 for incorporating higher order (irreducible m 2 3-body) terms in the 
RPS, while retaining the underlying simplicity of the self-consistent theory of 
localization. A basic result of this approach is that, in a domain of localized states, 
the imaginary part of the site self-energy is given approximately by3: 
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I 4  M .  D. WlNN AND D. E. LOGAN 

This equation has the same form as that which results from the second order 
RPS, Eq. (4), except that the bare transfer matrix element is replaced by an 
energy- and density-dependent effective or renormalized transfer matrix element, 
Qij = Q(Ri, Rj; p, E),  where p is the number density of sites. The effective transfer 
matrix element takes account of higher order RPS terms in a simple mean field sense 
and, physically, reflects the screening of the interaction between a pair of atoms by 
the other atoms in the system. The manner in which Qij differs from vj ,  and thus 
the specific localization characteristics of the system, depends on details of the 
(quenched) liquid-like structure of the disordered material. These effects, which are 
implicit in the specification of Qij as a sum of liquid-state interaction diagrams (see 
Reference 3), will be investigated in some detail in the following section. Here we 
simply note that the renormalized transfer matrix element does not depend explicitly 
on the random variables { E j ,  Aj}. The basic self-consistent theory of localization can 
thus be modified to include the effects of screening embodied in the effective transfer 
matrix element, as studied in Reference 3. 

When dealing with the self-consistent theory, however, whether with the conven- 
tional second order RPS or at the higher-order level of Eq. (5 ) ,  one is forced to 
analyze non-linear integral equations for the self-energy probability distributions; 
further, these are derived under the initial assumption that states of energy E are 
localized. In practice, therefore, the theories ultimately reduce to a stability analysis 
of localized states. To both simplify and go beyond a stability analysis of localized 
states, and to  incorporate dephasing effects such as electron-phonon coupling into 
the problem, Logan and Wolynes’ have recently developed a mean field theory of 
localization in which self-consistency is enforced solely on the most probable value, 
Amp@), of the site self-energy. In this way the self-consistency conditions ultimately 
reduce to algebraic rather than integral equations, and the pure localization problem 
may be examined as the transition is approached from either the localized or extended 
domains. The basic idea of this approach is to consider a given realization of the 
system in which the imaginary parts of the site self-energies of all atoms other than 
a specific “tagged” atom, i ,  are constrained to their most probable values. Using 
liquid state methods an explicit functional form is derived for the probability 
distribution f(Ai) of the imaginary part of the self-energy for the tagged atom. 
Self-consistency is then enforced simply by requiring that the resultant most probable 
value Amp(E; p) of f ( A i )  (where p = q + Amp(E)) be equal to the assumed “input” 
most probable value Amp(E) for the other sites. 

In practice, as described in Ref. 2, the behaviour of Amp(E; p) is examined explicitly 
in two limits, p 4 0 + and p -, m. The former limit corresponds physically to a 
domain of localized states (Amp(E) cc r j  4 O + ) ;  and, with q vanishingly small, the large 
p limit corresponds to a domain of strongly extended states of energy E,  associated 
with predominantly coherent transport. In addition, as discussed in Ref. 2, retention 
of a finite q in the second order RPS for the self-energy mimics in a simple but 
physically transparent manner the effects of dephasing interactions (where 2rj/h is a 
sum of the rates of all dephasing processes); in this case the large q and hence large 
11 limit describes the (Forster or master equation) domain of extremely rapid 
dephasing interactions, with incoherent transport. Having examined the limiting 
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LOCALIZATION DUE TO DISORDER 15 

behaviour of Amp(E; p)  in the small and large p domains, an interpolation is made 
between these limits via a simple Pade approximant which correctly preserves the 
small p analyticity of A,,(E; p). The q -+ O +  localization transition and, for q > 0, 
the influence of dephasing interactions, can then be examined starting from this basic 
self-consistency relation. 

Although formulated at the level of the conventional second-order RPS, in which 
screening effects embodied in the renormalized transfer matrix elements Oij  are 
omitted, it is straightforward to incorporate these effects into the above theory. For, 
within a most probable value approach, it is clear from (5) that in the p + O +  regime 
of localized states, Ai(E) is given by 

This is almost identical to that considered in Ref. 2, but with the bare qj replaced 
by the effective E- and p-dependent transfer matrix element Qij. The situation is 
even simpler in the large p limit. Conflating S y )  with S j  in (3), and writing S j ( E )  = 
E j ( E )  - iAmp(E) for all j # i, it is apparent that in the p --* cc limit the resultant 
expression for S i ( E )  is dominated by its second order term. In particular, the 
imaginary part of the self-energy for the tagged atom i reduces to 

which is precisely that considered in Ref. 2 in the large p limit. 
The basic formal modification to the most probable value theory of Logan and 

Wolynes2 thus reduces to an incorporation of the effective transfer matrix element 
Oij in the p -+ O+ localized domain. This is a minor modification, and the basic 
results of Ref. 2 carry through, leading to the following simple self-consistency 
equation for the most probable value, Amp(E), of the site self-energy : 

and corresponds to the second moment of the bare transfer matrix element averaged 
over the topological disorder, where g 2 ( R )  is the structural pair distribution function 
for particles interacting via the chosen classical potential. The quantity T ( p ;  E )  is 
given by: 
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16 M .  D. WlNN AND D. E. LOGAN 

D(E)  is the ensemble averaged density of states of the system, and J , ( p ;  E )  is the first 
moment of the magnitude of the renormalized transfer matrix element 

J , ( p ;  = P dR g,(R)I@(R; p, Ell, (9b) s 
where the p- and E-dependence of @ is made explicit. Assuming a knowledge of J , ,  
J ,  and the density of states D(E),  Eq. (7) is readily used to examine the pure ( q  + 0 + )  
Anderson localization problem: when Amp(E) is found to be proportional to q and 
thus vanishingly small, states of energy E are localized; and when states of energy E 
become extended Eq. (7) may be used to obtain an explicit expression for the 
non-vanishing A,,(E) and hence the E-dependent transfer rate from a site, z -  ‘ ( E )  = 
2Am,(E)/h. Similarly, when the effects of dephasing interactions are included, q > 0, 
(7) may be used to examine the dephasing rate dependence of the transfer rate and 
thus, for example, to investigate the problem of Mooij correlation regarded as a weak 
delocalization phenomenon. 

Viewed as a function of T(p ;  E )  and J,(p), Eq. (7) is identical to that of Ref. 2. The 
various T-domains of physical interest in the behaviour of Amp are discussed fully 
therein, and we do not repeat them here. The essential difference in the present work 
is that screening effects arising from the higher order RPS terms in the localized 
domain are included in the evaluation of T ( p ;  E )  via both the effective transfer matrix 
element and, implicitly, the density of states. Our primary interest here is to examine 
explicitly these effects at the most probable value level of description, particularly in 
regard to the energetic asymmetry which arises in the mobility edge trajectories as 
a consequence of screening. This requires consideration of suitable liquid state 
approximations to describe the dependence of @ ( R ;  p ;  E )  and D(E)  on energy, number 
density and characteristic structural parameters of the system, and will be considered 
in detail in the following section. We note first that, with q + O +  and T ( p ;  E) < 1 ,  
the solution to (7) is 

corresponding to localized states of energy E ,  and with n(E)  = 1 + Amp(E)/q = 

[l - T ( p ;  giving a rough measure of the number of sites which participate in 
the localized state. The criterion for a transition from localized to extended states is 
thus T(p;  E )  = 1, i.e. 

and for T(p;  E )  > 1, states of energy E are extended, with Amp(E) finite. 
Although derived from the detailed theory given in Ref. 2, some insight into the 

transition criterion may perhaps be gleaned from the following suggestive argument. 
Consider a localized state of energy E centred with maximum amplitude on site i ,  
and another with energy E’ centred on site j a distance R away from i .  If these 
states are indeed to be localized and unmixed, we argue that their energy separation, 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
0
8
:
2
9
 
2
8
 
J
a
n
u
a
r
y
 
2
0
1
1



LOCALIZATION DUE TO DISORDER 17 

A E  = I E’ - El, must exceed the effective matrix element I@(R)I which connects sites 
i and j ;  if A E  5 l@(R)l, mixing of the two will occur. We consider then a would-be 
localized state of energy E, and ask for the probability p ( E )  that we find another such 
that the separation in energy between the two is less than or comparable to the 
matrix element which effectively connects them. This gives the probability that the 
would-be state of interest has a “bond” or connection to another, and when this 
“bond percolation’’-like probability is of order unity we expect delocalization to 
occur. To estimate p(E),  note that the number of states whose energies lie in the range 
E * I@(R)I is 

N 1 D(E)dE 

where N is the total number of states (or, equivalently, sites). The probability that 
we find a site a distance R away from i is approximately 4 n R 2 g 2 ( R ) d R / V  where Vis 
the volume of the system. Thus the probability that we find a state of energy 
E’ centred on a site a distance R away from that of energy E such that A E  5 I@(R)I 
is roughly 

E +  I@(R)I 

E -  I@(R)I 

p ( R ;  E ,  E k I@(R)l)dR N ( 4 n p g 2 ( R ) R 2 d R )  x [ lE+ ‘ @ ( R ) ‘ D ( E ) d E ]  ( 1 2 4  

where p = N / V  is the number density. As R increases the relative probability of 
finding another state centred in the ( R ,  R + d R )  shell increases, but the number of 
such states which can potentially mix with that centred on i diminishes. Assuming 
for dominant values of R that the range of integration in (12a) is appreciably smaller 
than the bandwidth (so that the energy splitting is small), we approximate: 

p ( R ;  E, E + I@(R)I)  N 8npq2(R)I@(R)IR2D(E)  

E - IWRH 

Integrating over R gives 

p ( E )  z 2D(E)  x 47cp d R  R2g2(R)l@(R)I 

(12b) 

and when this is of order unity we anticipate delocalization, i.e. when J L ( p ;  E)D(E)  - 5 
which is to be compared with the criterion (1 1). 

s,’ 
= 2 J , ( p ;  E)D(E)  

3 SCREENING EFFECTS AND LOCALIZATION CHARACTERISTICS 

We now consider the renormalized transfer matrix element in some detail. From 
Ref. 3, Qjj  is decomposed as 

(13) @.. 1J = V .  1J + rp, 
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18 M. D. WINN AND D. E. LOGAN 

with rt specified as the following sum of liquid state interaction diagrams: 

r: = the sum of all distinct connected graphs consisting of two root points 
labelled i and j ,  at least one field point (associated with a factor of p X ( E ) ) ,  
and such that a given graph consists of an open polygonal periphery ( i  + j) 
of T,,-bonds connecting adjacent points on the polygon, with zero or one 
interior h2-bonds connecting all possible pairs of non-adjacent points 

Sites i and j are considered fixed in space and are root points (RP) in graph theory 
terminology; all other points are integrated over and are field points (FP). The 
quantity X ( E )  = Re G(z)  where, with z = E + i O + ,  G(z)  = X ( E )  - i zD(E)  is the 
ensemble averaged Green function for the spatially disordered tight-binding model. 
A q, 3 T(R,, R,) bond is defined by T I  = g2(R,, R,)V(Rk, Rl), and h,(R) = g 2 ( R )  - 1 
is the short-ranged structural pair distribution function. In Figure 1 we show all 
graphs in r: with up to three T,,-bonds. 

except the pair (i, j ) .  (14) 

i j  i j  i J  i J  i j  

(3) (4) (5) 
Figure 1 0 denotes 

a &I bond, and 0 - - - - - 0 a short-ranged h, (k l )  bond. A factor of pR(E) (1 )  is associated with each 
F P  ( R P ) .  k 

All graphs contributing to r: with a chain of up to three &bonds. 0 
k I 

I 

At this point it is helpful to note a correspondence between the above specification 
of mij and a similar quantity appearing in theories for the averaged Green functions 
of a topologically disordered tight-binding model. We have recently analyzed the 
latter problem13 and, in particular, have given a formal specification of a “complete” 
single-site theory for the averaged Green functions. I t  was shown that differences 
between various approximate but tractable single site theories arise from different 
approximations to a particular function S(1,2) (in what follows, i = 1, 2, .  . . as the 
argument of a function is used as a shorthand for R i ,  and d(i) = dR,). It is easily 
demonstrated that a graphical specification of the exact S( 1,2) is identical to that of 
I-’( 1,2) in the present problem, except that the FP  of the former have factors of pG(z) 
associated with them, as opposed to factors of p R ( E )  in the latter case. We may 
therefore effect tractable approximations to I-’( 1,2) by direct analogy with single-site 
approximations used in a determination of the averaged Green functions. One such 
is due to Ishida and Y o n e ~ a w a ’ ~  which, in the present context, corresponds to 

ro(i, 2) = ~ ( 1 ,  2) - ~ ( i ,  2) (1 5 4  
with W(1, 2) defined by: 

W(1, 2) = T(1, 2) + pX(E)  d(3)W(1, 3)T(3, 2) (15b) s 
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LOCALIZATION DUE TO DISORDER 19 

Graphically, this corresponds to a neglect of all diagrams contributing to @( 1,2) 
which possess interior h,(k,  !)-bonds, such as-graphs (3)-(5) in Figure 1. The above 
approximation was examined explicitly in Ref. 3 in the limit g2(R) = 1 for all R, which 
is exact for a perfectly random system, and for which Eqs (15) reduce to the 
well-known Matsubara-Toyozawa approximation' '. 

It is however known that the best single-site theory for the averaged Green 
functions is the effective medium approximation (EMA) of Roth'. Graphically, this 
corresponds in the present problem to neglecting only those diagrams in @(1,2) with 
crossing interior h,-bonds, such as graph (5) in Figure 1. The EMA is equivalent to 
the single super chain approximation (SSCA) examined by us recently8 which, with 
ro(l, 2) and X(E) replacing S(1, 2) and G(z)  respectively, may be written in the present 
case as 

ro(i, 2) 'V r(i, 2) = ~ ( 1 ,  2) - c(1, 2) (16) 

where H(1, 2) and C(1, 2) are found from solution of 

H(1, 2) = C(1, 2) + p X ( E )  d(3)H(l, 3)C(3, 2) (174 s 
with: 

Equation (17a) is analogous to the Ornstein-Zernike equation for the pair distribu- 
tion function of a classical liquid; and (17b) provides a closure relation which, with 
g2(1, 2) and V(1,2) specified, enables us to find H(1,2) and C(1, 2) and hence, from 
(13) and (16), the effective transfer matrix element. 

To illustrate this we consider a bare transfer matrix element of Yukawa form, 

V ( R )  = - (VJR)  exp( - aR), (18) 

the spatial range of which is characterized by the length scale a-  I = aft. A modified 
exponential transfer matrix element is known to be appropriate to describe several 
problems of interest, such as electronic transport in tightly bound bands of certain 
liquid metals, and in the impurity band of a doped semiconductor. The choice of a 
Y ukawa interaction reproduces the physical features of interest whilst allowing simple 
analytical results to be obtained. We consider a system with off-diagonal disorder 
alone i.e. P ( E )  = S(E) .  And we take g2(R) to be a simple step function corresponding 
to the low-density limit of hard spheres with hard sphere diameter, c i.e. 

= Q R  - 4 (19) 

Although the model pair distribution function (19) is simple, it introduces a second 
length scale, c, which characterizes the range of structural correlations in the 
system. The variation of localization characteristics with both the structural length 
scale and the hopping length scale, may thus be examined. 
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20 M. D. WlNN AND D. E. LOGAN 

To evaluate @(R) we require T(R), the Fourier transform of which is given from 
(16) and (17) by: 

For a given p we thus require 8 ( E )  and c(k). To be consistent with the EMA/SSCA 
approximation to @(R) we must of course evaluate 8 ( E )  = Re G(z) within the same 
framework. This problem has been examined by us in Ref. 8; 8 ( E )  is thus known. 
To find c ( k )  note that with (19) for gz(R),  the closure condition (17b) reduces to: 

(2 1 a) 

(2 1 b) 

H(R) = 0 : R -= a 
C(R) = V ( R ) :  R > a 

As with the related problem for the averaged Green functions', solution of the 
EMA/SSCA Eqs. (17a) and (21) is obtained directly by noting a formal corre- 
spondence of these equations to the mean spherical approximation of classical liquid 
state theoryI6, solutions of which are known for the case of a Yukawa interacti~n'~. ' ' .  

It is now convenient to introduce the following reduced variables based on a as 
the unit of length and Vg = VJo as the basic unit of energy: 

p* = pa3, u* = ma, R* = R/a 

T(E) = V g X ( E ) ,  C(R) = C(R)/V,*, A ( R )  = H(R)/Vg 

With V ( R )  given by (18), the solution of Eqs (17a) and (21) is: 

(22) 

where 

g ( E )  = - 4 x p * T ( E )  dR*R*e-"*R't?(R*) (23b) 

satisfies: 

For given p* and a*, and with X ( E )  known, (23c) gives $E). From (23a) and (21b) 
we thus know C(R)  for all R ;  @(R) follows from Eqs. (20) and (13). One potential 
problem with the determination of g(E) is the multiplicity of roots associated with 
Eq. (23c). We know however from (23b) that @) is real and must be zero when f ( E )  
is zero. Further, at the band edges in the density of states D(E),  G(z) = X ( E ) .  The 
present problem is then equivalent to the averaged Green ,function problem men- 
tioned above, and we may identify 3 ( E )  as the improper self-energy at the band edges, 
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21 LOCALIZATION DUE TO DISORDER 

the values of which are known'. These considerations are sufficient to determine 
uniquely the correct root of Eq. (23c). 

In Figure 2 we plot O(R) and the bare V(R),  in units of V,*, as functions of R* for 
p* = 0.007, a* = 0.572 and (a) E = E/Vg = 0.2, (b) E = -0.4. Figure (2a) is typical of 
higher energies and shows that Q(R)  is screened i.e. it is of shorter spatial range than 
V(R).  Conversely, Figure (2b) shows the low energy case where Q(R)  is anti-screened 
i.e. is longer ranged than the bare V(R).  From Eqs (20) and (13) it follows that when 
R(E) = 0, @(R) = V ( R ) ,  and this energy represents a crossover from screening to 
anti-screening behaviour. We add that, in contrast to the estimate of Ref. 3, the 
crossover does not in general occur at 8 = 0, but rather at some positive energy. 

To see how the screening embodied in @(R) affects the localization characteristics 
of the system we require J , ( p ;  E )  given by Eq. (9b). A determination of J ,  is simplified 
considerably if we assume O(R) is negative definite. This is certainly true when @(R)  is 

R* 

R* 

Figure 2 @ ( R ) / V f  (full curve) a t  the EMAjSSCA level of description and the bare V(R)/V,* (broken curve) 
as functions of R* for p* = 0.007, Y *  = 0.572 and (a) c = 0.2, (b) E = - 0.4. 
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22 M. D. WINN AND D. E. LOGAN 

anti-screened, and although screening may cause @(R)  to become positive for some 
small R range, the extent to which it does so is negligible. Making this assumption 
we have 

where Eqs (13), (16) and (17) have been used. We thus require only e(0) which 
from (21b) and (23a) is given by 

= c, + C,$(E) + C,[$(E)]’ v: 
where: 

C, = - 474 1 + a*) exp( - a*)/a*’ 

C 3  = C,/2a* - Cl/4a*’ - n(l - a*) e x p ( a * ) / ~ * ~  

Equations (24) and (25) give J , ( p ;  E). To determine mobility edge trajectories via the 
localization criterion (1 1) we need in addition the averaged density of states, D(E) .  
Once again consistency demands that we evaluate D(E)  within the EMA/SSCA, as 
described fully in Ref. 8. All quantities appearing in the localization function T(E; p),  
Eq. (9a), are thus evaluated at the EMA level of description. 

A comment is perhaps in order on the use of the EMA/SSCA for D ( E )  at reduced 
densities of order p* - 0.01, which in the context described below is the density 
regime of interest in studying localization. Simulations have been performed’ to test 
the accuracy of the density of states obtained from the EMA/SSCA, and from a theory 
applicable at very low densities, p* 5 0.002; with a* - 0.5, neither theory does 
particularly well at the intermediate density of p* - 0.01. Use of the EMA/SSCA for 
D(E)  has however the advantage of being consistent with its use in calculating 
@ ( R ;  p, E ) ;  further, a calculation of both D(E)  and @ via the EMA/SSCA introduces 
asymmetry into the mobility edge trajectories, the presence of which is confirmed 
computationally as we discuss below. 

In Figure 3 we plot J , ( p * ;  E )  = Jl/V: and &) = V:D(E), as functions of reduced 
energy, E, for p* = 0.007 and a* = 0.572; the shaded areas indicate localized states. 
The figure illustrates the competing effects of J ,  and D(E)  in determining mobility 
edges: the characteristic asymmetry of D(E) (which may also be viewed in terms of 
screening3) by itself tends to favour extended states in the upper half of the band, 
whereas the anti-screening of @(R)  tends to favour, via the resultant J , (p ;  E) ,  extended 

c, = C,/a* + 2742 - a*2)/a*3 
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LOCALIZATION DUE TO DISORDER 23 

0.1 012 0.3 

c 
Figure 3 
The shaded areas indicate localized states. 

b(r:) (full curve) and j , ( p * ;  c) (broken curve) as functions of c for p* = 0.007 and a* = 0.572. 

states in the lower half band. We see that, although there is the usual pattern of 
localized states towards the edges of the band separated by a domain of extended 
states, the latter occur in a low-energy low-density-of-states region due to the 
dominating effects of anti-screening in @(R). The characteristic long low-energy 
tail in D ( E )  is thus by itself no guarantee of localized states. 

The asymmetry in the positions of the mobility edges has been confirmed by 
computer simulation. Ching and Huber4 have studied a three-dimensional system 
specified by a tight-binding Hamiltonian, with active sites randomly distributed at 
low occupancy on an underlying f.c.c. lattice, and with a simple exponential transfer 
matrix element. Gibbons er a/.  have studied an off-diagonally disordered tight- 
binding model with topological disorder characteristic of a quenched hard sphere 
fluid, also using a pure exponential transfer matrix element, V ( R )  = - Vb exp( - cc’R). 
The full effects of hard sphere structure are of course included in the latter simulation 
and, for cc’c = 0.9, mobility edge trajectories were estimated from a study of the 
inverse participation ratio (IPR); these are shown in Figure 4. The estimated location 
of the mobility edges in the upper half of the band is statistically quite sound, but 
because of the large scatter in the IPR distribution for energies E 5 -0.1, the mobility 
edges estimated in this region (shown as a dotted line) are somewhat tenuous; and, 
as argued in Ref. 5, i t  is likely that the regime of localized states is overestimated 
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24 M. D. WINN AND D. E. LOGAN 

Figure 4 Mobility edge (ME) and band edge (BE) trajectories from theory (full curves) for a* = ao = 
0.572. Shown for comparison is the mobility edge estimated in Ref. 5 (broken curve) for a’o = 0.9 (see text 
for relation between a and a’). 

somewhat. Although the simulation has a pure exponential matrix element as 
opposed to a Yukawa form in the present theory, we can compare the two simply 
by choosing the Yukawa parameters to ensure that the first and second moments of 
the two transfer matrix elements are identical. This yields M = 0 .636~’  (or a* = 0.572) 
and V $  = 0.9481/;, and the resultant mobility edge trajectories obtained from the 
preceding theory are compared with the simulation in Figure 4. The qualitative 
agreement between theory and simulation in regard to mobility edge asymmetry is 
good; and the quantitative agreement, particularly in the upper half band, is 
encouraging given the simplicity of the underlying localization theory. The main 
discrepancy occurs in the lower half of the band and, as mentioned above, this 
may be a problem with the estimation of mobility edges from the simulation: the 
present theory would indeed suggest that simulation overestimates somewhat the 
range of localized states in the lower half of the band. 

The effects of screening are evidently important in determining the localization 
characteristics of the system. Such effects would of course still be present if the 
structural order implicit in the hard sphere length scale were neglected. How 
important is it, even at the relatively low densities under consideration, to consider 
the short-ranged structure of the system which enters the problem via the dimension- 
less ratio MO ( = c / a H ) ?  This is illustrated in Figure 5 where the mobility edge 
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\ 

‘I 

-2.0 -1.5 -1.0 -0.5 0.0 0.5 1 .o 1.5 2.0 

Figure 5 
the different set of units used for the density and energy scales. 

As Figure 4 but with the MTA result added (dotted curve) corresponding to x* = C((T = 0. Note 

trajectories of Figure 4 are reproduced but with P C ( - ~  (=pi) and E l l / , @  as the 
reduced density and energy scales. Also shown for comparison is the theoretical result 
with a/aH set to zero, corresponding to complete neglect of the short range structural 
order; in this case the EMA/SSCA, in common with all other single site theories, 
reduces to the familiar Matsubara-Toyozawa approximation ”. From the figure it  
is evident that an adequate treatment of structural correlations is indeed necessary 
to obtain agreement with simulation. 
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